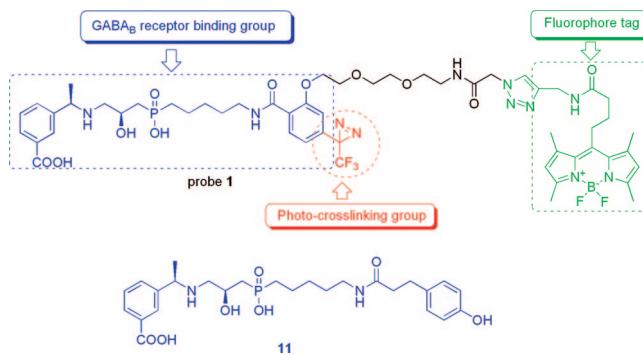


Letters

Activity-Based Probe for Specific Photoaffinity Labeling γ -Aminobutyric Acid B (GABA_B) Receptors on Living Cells: Design, Synthesis, and Biological Evaluation


Xin Li,^{‡,§} Jian-Hua Cao,^{†,§} Ying Li,^{†,§} Philippe Rondard,[#] Yang Zhang,[†] Ping Yi,[†] Jian-Feng Liu,^{*,†} and Fa-Jun Nan^{*,‡}

Key Laboratory of Molecular Biophysics of Ministry of Education,
School of Life Science and Technology, Huazhong University of
Science and Technology, 1037 Luo Yu Road, Wuhan, Hubei, China,
National Center for Drug Screening, State Key Laboratory of Drug
Research, Shanghai Institute of Materia Medica, Shanghai Institutes
of Biological Sciences, Chinese Academy of Sciences, 189 Guo Shou
Jing Road, Shanghai 201203, China, and Institute of Functional
Genomics, CNRS UMR5203, INSERM U661, University of
Montpellier 1 and 2, Montpellier, F-34094, France

Received February 19, 2008

Abstract: A trimodular activity-based probe was designed, synthesized, characterized, and applied to photoaffinity label the GABA_B receptors transiently expressed in Chinese hamster ovary (CHO) cells. The probe exhibits specific binding activity at the ligand-binding pocket of GB1 subunits and high specificity of photoaffinity labeling, which makes the probe valuable for studying the localization and function of GABA_B receptors on living cells.

γ -Aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the mammalian central nervous system and exerts its effects through two ligand-gated channels, GABA_A and GABA_C receptors, and the metabotropic GABA_B receptors. GABA_B receptors are widely expressed in the brain or spinal cord during development and are located in both pre- and postsynaptic compartments.¹ They mediate slow synaptic inhibition and are involved in numerous types of nociception, cognitive impairment, epilepsy, spasticity, and drug addiction.² GABA_B receptors belong to the family 3 of G-protein-coupled receptors (GPCRs). Structurally, GABA_B receptors possess an extracellular domain so-called Venus flytrap module that binds GABA and a heptahelical domain responsible for the recognition and activation of heterotrimeric G-proteins. Functional GABA_B receptors were reported to repress Ca²⁺ influx³ and trigger K⁺ channels opening^{4,5} via coupling to G_{i/o}-type protein.^{6,7} GABA_B receptors can also modulate the level of cyclic adenosine monophosphate (cAMP)⁸ and the phosphorylation of ERK_{1/2} and CREB.⁹ GABA_B receptors form heterodimers composed of two subunits: GB1 and GB2.¹⁰ The GB1 subunit has been shown to bind GABA but is unable to activate G-proteins.¹¹ It also fails to reach the cell surface when expressed alone because of

Figure 1. Structures of probe 1 and known GB1 antagonist 11 (CGP64213).

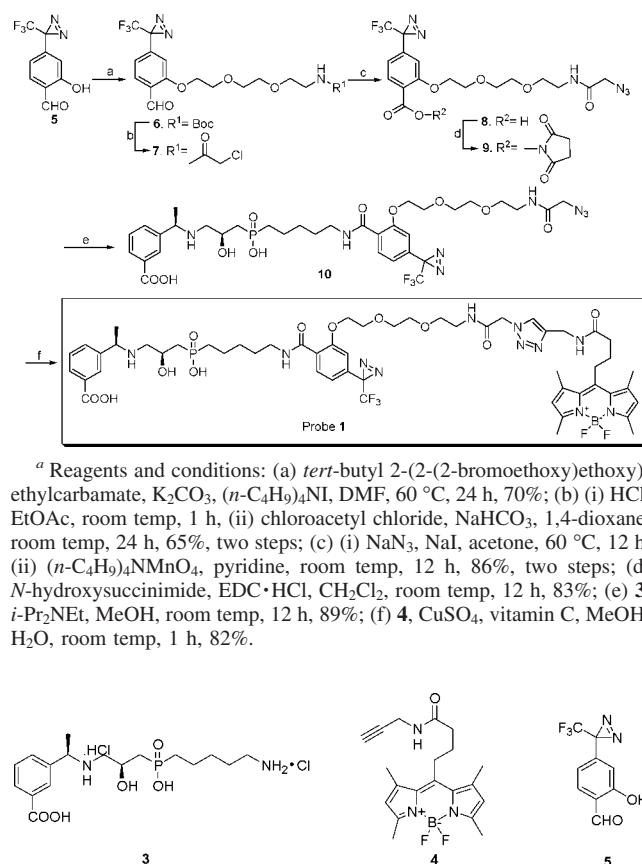
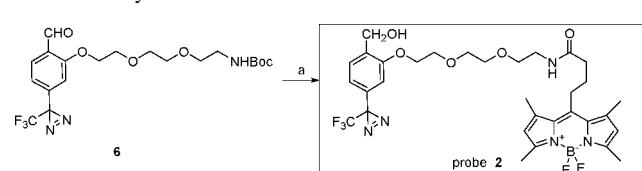
an IRS located in its C-terminal tail.¹² In contrast, the GB2 subunit can activate G-proteins upon assembly of the heterodimer with GB1 at the cell surface but cannot directly bind GABA.¹³ Interestingly, the GB2 subunit is also required for high affinity of GABA to the GB1 subunit.¹⁴ Moreover, GB2 facilitates GB1 targeting to the cell surface by masking its IRS when forming heterodimers. However, the mechanisms that regulate GABA_B receptors oligomerization at the plasma membrane remain largely unknown.

The development of small molecular fluorescent probes specifically targeting unmodified or native GABA_B receptors represents a major challenge. Such molecules will be powerful tools to probe the localization and function of GABA_B receptors in living cells, as previously described for other proteins.¹⁵ Activity-based protein profiling (ABPP) is a chemical strategy that utilizes activity-based probes (ABPs) to profile the functional state of proteins in complex proteomes.¹⁶ To date, ABPs have been developed for many enzyme classes and produced global portraits of enzyme activity that depict specific physiological and pathological processes.¹⁷ Nonetheless, the approach has not been applied to study the location of important receptor proteins in living cells.

In this paper, we report the design, synthesis, and biological application of an activity-based fluorescent probe for photoaffinity labeling GABA_B receptors on living cells. The probe, which is termed probe 1, is designed based on 11, a GB1 selective high-affinity antagonist.¹⁸ The structure template of probe 1 consists of the main structure moiety in 11 for binding GABA_B receptors, a photolabile diazirine group that effectively generates a covalent, irreversible linkage between the probe and the GABA_B receptors after UV irradiation and a fluorescent reporter tag for visualizing the localization of the labeled proteins, as outlined in Figure 1. The photoinduced cross-linking of probe 1 to the receptor is designed to dramatically increase labeling efficacy. The trifluoromethylaryldiazirine moiety was incorporated as the photochemically reactive functional group because of the advantage of its excellent chemical stability prior to photolysis.¹⁹ We selected 4, 4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) as the fluorophore because of its many attractive spectral characteristics and its hydrophobic nature.²⁰

The synthesis of probe 1 is outlined in Scheme 1. The key intermediates 3–5 (Figure 2) were prepared individually via procedures similar to those reported previously with some

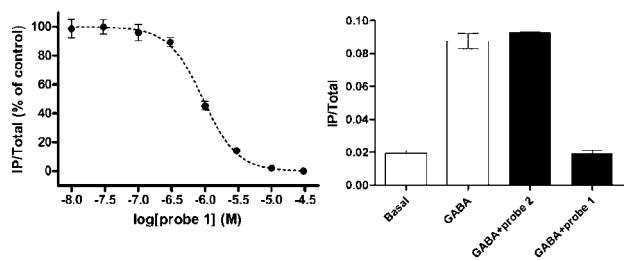
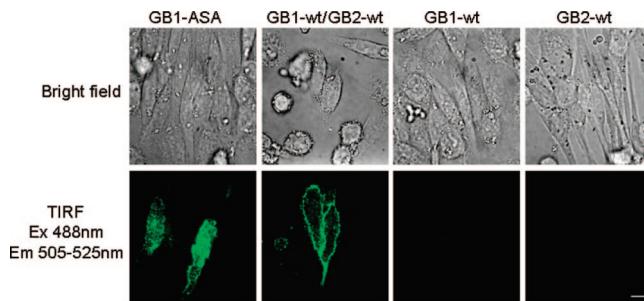
* To whom correspondence should be addressed. Phone/Fax: 86-21-50800954. E-mail: fjan@mail.shcnc.ac.cn (for F.-J.N.) or jfliu@mail.hust.edu.cn (for J.-F.L.).



[†] Chinese Academy of Sciences.

[‡] Authors contributed equally to this work.

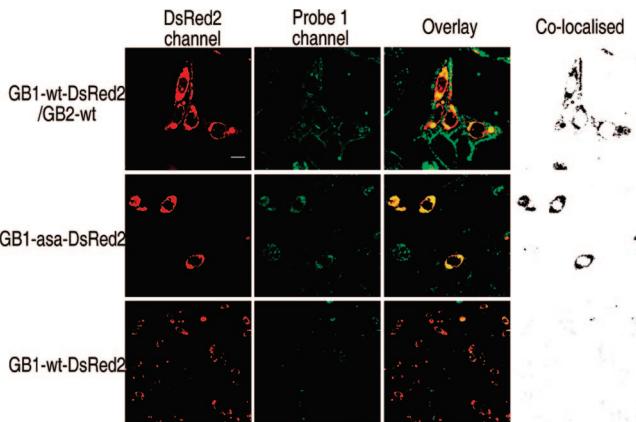
[§] Huazhong University of Science and Technology.

[#] University of Montpellier 1 and 2.

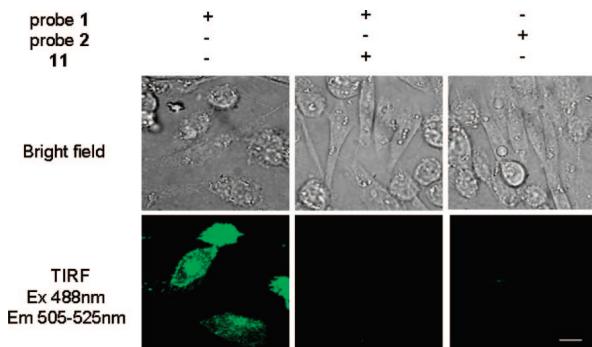


^a Abbreviations: ERK, extracellular signal-regulated kinase; cAMP, cyclic adenosine monophosphate; CREB, cAMP-responsive element binding protein; IRS, intracellular retention signal.

Scheme 1. Synthesis of Probe 1^a**Figure 2.** Structures of the three elements comprising probe 1.**Scheme 2. Synthesis of Probe 2^a**

modifications.^{21–23} The azide group was attached to the phenyldiazirine **5** via a poly(ethylene glycol) (PEG) linker, and the benzaldehyde was oxidized to the corresponding benzoic acid, which was subsequently activated with *N*-hydroxysuccinimide to give compound **9**. Coupling **9** with the bioactive ligand **3** gave **10**, which was subsequently reacted with the fluorophore **4** to give probe **1** employing the copper-catalyzed [3 + 2] azide–alkyne cycloaddition.²⁴


As a control compound, probe **2** (Figure 1), which has no bioactive ligand toward GABA_B receptors but only contains the photoaffinity and fluorophore groups, was also synthesized by reduction and deprotection of **6**, followed by coupling with the activated ester of the fluorophore (Scheme 2).

Prior to the labeling studies, the probes were first evaluated for their bioactivity as GABA_B receptor antagonists. As shown in Figure 3, probe **1** significantly inhibited GABA_B receptors activation induced by GABA with an IC₅₀ of 1.03 μ M, while probe **2** had no such inhibitory effect (Figure 3). These results confirmed that probe **1** retains substantial affinity to GABA_B


Figure 3. Probe **1** inhibits GABA_B receptor activation. HEK293 cells cotransfected with the cDNA of wild-type GB1 and GB2 subunits, and the chimera Gq19, were incubated with the indicated concentrations of probe **1** for 15 min before stimulation with 10 μ M of GABA for 30 min. IP formation data are expressed as the percentage of the response. IC₅₀ value of probe **1** is 1.03 μ M. Inner panel, 10 μ M probe **2** is not able to inhibit the IP production induced by 10 μ M GABA, compared to 10 μ M probe **1**. Values are the mean of triplicates from one representative of three independent experiments.**Figure 4.** Probe **1** specifically labels GB1 subunit expressed on the surface of living cells. CHO cells transiently transfected with the indicated constructs were treated with probe **1** followed by UV irradiation and then observed in TIRF microscopy (OLYMPUS IX-70, oil immersion, $\times 100$ objective) using filter sets for probe **1**. Upper panels are bright field images, while the lower panels represent fluorescent images under probe **1** channel. Scale bar represents 10 μ m.

receptors and represents an activity-based fluorescent probe. The selectivity of the probe **1** on other GABA receptors was not determined.

Probe **1** was further evaluated for its capacity to label the GABA_B receptors in living cells. CHO cells transiently expressing GB1-ASA¹⁴ (a GB1 mutant able to reach the cell surface alone) were incubated with probe **1** for 15 min. After photolysis under UV for 15 min at room temperature, the cells were washed with phosphate buffered saline (PBS) twice and observed by total internal reflection fluorescent (TIRF) microscopy to acquire detailed information about protein expressed on the cell surface.²⁵ As shown in Figure 4, probe **1** specifically labels GB1 expressed on the cell surface. Similar results were obtained on CHO cells transiently cotransfected with GB1-wt and GB2-wt. However, CHO cells transfected only with wild-type GB1 that remains intracellular, or GB2 with no affinity for **11**, could not be labeled with probe **1**. All these results were in agreement with the previously reported structural properties^{11–13} of the GABA_B receptor and illustrate the specificity of the labeling experiment. To show that probe **1** specifically labels the GB1 subunits expressed on the cell surface, we conducted double labeling experiments using fluorescence confocal microscopy. The DsRed markers²⁶ combined with green fluorescent probe **1** markers for double labeling enable us to optically distinguish and quantitatively analyze the specificity of labeling in living cells. CHO cells transiently cotransfected with DsRed2-tagged GB1-wt and GB2-wt, DsRed2-tagged GB1-ASA, or DsRed2-tagged GB1-wt were labeled with probe **1** as previously

Figure 5. Probe **1** does not label intracellular GABA_B receptors in living cells. CHO cells were transiently cotransfected with the indicated constructs. Images were detected by LSCM (OLYMPUS, FV-1000, $\times 60$ objective). The colocalization of the DsRed2-tagged receptor with probe **1** results in the apparition of a third color in the overlay image: yellow for red and green merge. Probe **1** channel was detected as previously, whereas DsRed-tagged constructs were detected after excitation (ex) at 550 nm and emission (em) at 585 nm. Scale bar represents 10 μ m.

Figure 6. The specificity of labeling depends on the active moiety. Pretreatment of CHO cells expressing GB1-ASA with **11** significantly eliminates the fluorescent intensity compared with no pretreatment. Probe **2** treatment produces no labeling. Results were obtained by TIRF microscopy.

described. Only negligible staining was obtained with cells expressing DsRed2-tagged GB1-wt alone (Figure 5), suggesting that probe **1** did not label intracellular GABA_B receptor. Furthermore, competition experiments were conducted to confirm the labeling specificity. CHO cells transiently transfected with GB1-ASA were pretreated with **11** (500 μ M) and then incubated with probe **1** as described previously. Fluorescence microscopy experiments showed an apparent elimination of fluorescence intensity in these conditions (Figure 6). Incubation of CHO cells expressing GB1-ASA with probe **2** produced no labeling (Figure 6). These data demonstrate that the active moiety of probe **1** is essential for its specificity.

We also demonstrated the necessity of a covalent bond between probe **1** and the GABA_B receptor induced by UV irradiation to enhance the recognition. CHO cells transiently transfected with GB1-ASA were treated with probe **1** followed by UV irradiation or not. The fluorescence intensity under no UV irradiation condition was significantly decreased compared with that under UV irradiation condition (Supporting Information Figure 2). These results indicated that UV induced covalent bond formation could increase labeling efficiency, even though the probe has low affinity for its target protein.

In summary, an activity-based trimodular probe was designed, synthesized, and applied to the specific labeling of GABA_B receptors transiently expressed in living cells. Pharmacological studies show that the probe conserved reasonable antagonist potency for GABA_B receptors. Subsequent photoaffinity labeling and different fluorescent microscopy experiments also show that the probe labels the functional GABA_B receptors on the cell surface with high specificity in an activity-based manner. Several lines of evidence support this view. First, only GB1 with its IRS mutated (GB1-ASA) or the heterodimeric functional GABA_B could be labeled but not GB2 expressed alone. Second, the labeling could be significantly completed by pretreatment with the bioactive moiety of the probe. Finally, probe **2**, which has no affinity to GABA_B receptors, failed to label the GB1-ASA transiently expressed on the CHO cells surface. Moreover, the approach has the advantage of forming a permanent covalent bond between the probe and the receptors through photolysis, thus allowing direct study of the dynamics of these receptors in living cells together with its biochemical analysis. Although many fluorescent photoaffinity probes have been reported,²⁷ it is important to note that our experiments were performed on living cells. The functional multiplicity and the specificity of the labeling of the probe suggest useful applications for this method.

Acknowledgment. This work was supported by National Basic Research Program of China (Grant 2007CB914200), Chinese Academy of Sciences (Grant KSCX1-YW-R-12, to F.-J.N.), National Natural Science Foundation of China (Grants 30725049 and 30623008 to F.-J.N. and Grants 30530820 and 30470368 to J.-F.L.), and 863 Program of China (Grant 2006AA02Z326 to J.-F.L.). We also thank Dr. Jean-Philippe Pin for providing us the GB1-ASA construct and Dr. Eric Chevet for helpful discussions.

Supporting Information Available: Synthesis and chromatographic data of **6–10** and probes **1** and **2**, biological methods, and HPLC conditions and traces for probes **1** and **2**. This material is available free of charge via the Internet at <http://pubs.acs.org>.

References

- Bettler, B.; Kaupmann, K.; Bowery, N. GABAB receptors: drugs meet clones. *Curr. Opin. Neurobiol.* **1998**, *8*, 345–350.
- Bettler, B.; Tiao, J. Y.-H. Molecular diversity, trafficking and subcellular localization of GABAB receptors. *Pharmacol. Ther.* **2006**, *110*, 533–543.
- Harayama, N.; Shibuya, I.; Tanaka, K.; Kabashima, N.; Ueta, Y.; Yamashita, H. Inhibition of N- and P/Q-type calcium channels by postsynaptic GABAB receptor activation in rat supraoptic neurons. *J. Physiol.* **1998**, *509*, 371–383.
- Luscher, C.; Jan, L. Y.; Stoffel, M.; Malenka, R. C.; Nicoll, R. A. G. protein-coupled inwardly rectifying K⁺ channels (GIRKs) mediate postsynaptic but not presynaptic transmitter actions in hippocampal neurons. *Neuron* **1997**, *19*, 687–695.
- Schuler, V.; Luscher, C.; Blanchet, C.; Klix, N.; Sansig, G.; Klebs, K.; Schmutz, M.; Heid, J.; Gentry, C.; Urban, L.; Fox, A.; Spooren, W.; Jaton, A. L.; Vigouret, J.; Pozza, M.; Kelly, P. H.; Mosbacher, J.; Froestl, W.; Kaslin, E.; Korn, R.; Bischoff, S.; Kaupmann, K.; Putten, H. V. D.; Bettler, B. Epilepsy, hyperalgesia, impaired memory, and loss of pre- and postsynaptic GABAB responses in mice lacking GABAB(1). *Neuron* **2001**, *31*, 47–58.
- Leaney, J. L.; Tinker, A. The role of members of the pertussis toxin-sensitive family of G proteins in coupling receptors to the activation of the G protein-gated inwardly rectifying potassium channel. *Proc. Natl. Acad. Sci. U.S.A.* **2000**, *97*, 5651–5656.
- Odagaki, Y.; Koyama, T. Identification of G α subtype(s) involved in γ -aminobutyric acid B receptor-mediated high-affinity guanosine triphosphatase activity in rat cerebral cortical membranes. *Neurosci. Lett.* **2001**, *297*, 137–141.
- Simonds, W. F. G protein regulation of adenylate cyclase. *Trends Pharmacol. Sci.* **1999**, *20*, 66–73.

(9) Tu, H.; Rondard, P.; Xu, C.; Bertaso, F.; Cao, F.; Zhang, X.; Pin, J.-P.; Liu, J. Dominant role of GABAB 2 and $G\beta\gamma$ for GABAB receptor-mediated-ERK1/2/CREB pathway in cerebellar neurons. *Cell. Signalling* **2007**, *19*, 1996–2002.

(10) Pin, J.-P.; Kniazeff, J.; Binet, V.; Liu, J.; Maurel, D.; Galvez, T.; Duthey, B.; Havlickova, M.; Blahos, J.; Prézeau, L.; Rondard, P. Activation mechanism of the heterodimeric GABAB receptor. *Biochem. Pharmacol.* **2004**, *68*, 1565–1572.

(11) Galvez, T.; Duthey, B.; Kniazeff, J.; Blahos, J.; Rovelli, G.; Bettler, B.; Prézeau, L.; Pin, J.-P. Allosteric interactions between GB1 and GB2 subunits are required for optimal GABAB receptor function. *EMBO J.* **2001**, *20*, 2152–2159.

(12) Pagano, A.; Rovelli, G.; Mosbacher, J.; Lohmann, T.; Duthey, B.; Stauffer, D.; Ristig, D.; Schuler, V.; Meigel, I.; Lampert, C.; Stein, T.; Prézeau, L.; Blahos, J.; Pin, J.-P.; Froestl, W.; Kuhn, R.; Heid, J.; Kaupmann, K.; Bettler, B. C-Terminal interaction is essential for surface trafficking but not for heteromeric assembly of GABAB receptors. *J. Neurosci.* **2001**, *21*, 1189–1202.

(13) Kniazeff, J.; Galvez, T.; Labesse, G.; Pin, J.-P. No ligand binding in the GB2 subunit of the GABAB receptor is required for activation and allosteric interaction between the subunits. *J. Neurosci.* **2002**, *22*, 7352–7361.

(14) Liu, J.; Maurel, D.; Etzol, S.; Brabet, I.; Ansanay, H.; Pin, J.-P.; Rondard, P. Molecular determinants involved in the allosteric control of agonist affinity in the GABAB receptor by the GABAB2 subunit. *J. Biol. Chem.* **2004**, *279*, 15824–15830.

(15) (a) Kozikowski, A. P.; Kotoula, M.; Ma, D.; Boujrad, N.; Tučkmantel, W.; Papadopoulos, V. Synthesis and biology of a 7-nitro-2,1,3-benzodiazol-4-yl derivative of 2-phenylindole-3-acetamide: a fluorescent probe for the peripheral-type benzodiazepine receptor. *J. Med. Chem.* **1997**, *40*, 2435–2439. (b) Taliani, S.; Simorini, F.; Sergianni, V.; La Motta, C.; Da Settimo, F.; Cosimelli, B.; Abignente, E.; Greco, G.; Novellino, E.; Rossi, L.; Gremigni, V.; Spinetti, F.; Chelli, B.; Martini, C. New fluorescent 2-phenylindolglyoxylamide derivatives as probes targeting the peripheral-type benzodiazepine receptor: design, synthesis, and biological evaluation. *J. Med. Chem.* **2007**, *50*, 404–407. (c) Cha, J. H.; Zou, M. F.; Adkins, E. M.; Rasmussen, S. G. F.; Loland, C. J.; Schoenenberger, B.; Gether, U.; Newman, A. H. Rhodamine-labeled 2 β -carbomethoxy-3 β -(3,4-dichlorophenyl) tropane analogues as high-affinity fluorescent probes for the dopamine transporter. *J. Med. Chem.* **2005**, *48*, 7513–7516.

(16) Evans, M. J.; Cravatt, B. F. Mechanism-based profiling of enzyme families. *Chem. Rev.* **2006**, *106*, 3279–3301.

(17) (a) Liu, Y.; Patricelli, M. P.; Cravatt, B. F. Activity-based protein profiling: the serine hydrolases. *Proc. Natl. Acad. Sci. U.S.A.* **1999**, *96*, 14694–14699. (b) Adam, G. C.; Cravatt, B. F.; Sorensen, E. J. Proteomic profiling of mechanistically distinct enzyme classes using a common chemotype. *Nat. Biotechnol.* **2002**, *20*, 805–809. (c) Saghatelian, A.; Jessani, N.; Joseph, A.; Humphrey, M.; Cravatt, B. F. Activity-based probes for the proteomic profiling of metalloproteases. *Proc. Natl. Acad. Sci. U.S.A.* **2004**, *101*, 10000–10005.

(18) Kaupmann, K.; Huggel, K.; Heid, J.; Flor, P. J.; Bischoff, S.; Mickel, S. J.; McMaster, G.; Angst, C.; Bittiger, H. Expression cloning of GABAB receptors uncovers similarity to metabotropic glutamate receptors. *Nature* **1997**, *386*, 239–246.

(19) Hatanaka, Y.; Sadakane, Y. Photoaffinity labeling in drug discovery and developments: chemical gateway for entering proteomic frontier. *Curr. Top. Med. Chem.* **2002**, *2*, 271–288.

(20) Karolin, J.; Johansson, L. B. A.; Strandberg, L.; Ny, T. Fluorescence and absorption spectroscopic properties of dipyrrometheneboron difluoride (BODIPY) derivatives in liquids, lipid membranes, and proteins. *J. Am. Chem. Soc.* **1994**, *116*, 7801–7806.

(21) Belley, M.; Sullivan, R.; Reeves, A.; Evans, J.; O'Neill, G.; Ng, G. Y. K. Synthesis of the nanomolar photoaffinity GABAB receptor ligand CGP 71872 reveals diversity in the tissue distribution of GABAB receptor forms. *Bioorg. Med. Chem.* **1999**, *7*, 2697–2704.

(22) Li, Z. G.; Mintzer, E.; Bittman, R. First synthesis of free cholesterol-BODIPY conjugates. *J. Org. Chem.* **2006**, *71*, 1718–1721.

(23) Hatanaka, Y.; Hashimoto, M.; Kurihara, H.; Nakayama, H.; Kanaoka, Y. A novel family of aromatic diazirines for photoaffinity labeling. *J. Org. Chem.* **1994**, *59*, 383–387.

(24) Kolb, H. C.; Sharpless, K. B. The growing impact of click chemistry on drug discovery. *Drug Discovery Today* **2003**, *8*, 1128–1137.

(25) Schneckenburger, H. Total internal reflection fluorescence microscopy: technical innovations and novel applications. *Curr. Opin. Biotechnol.* **2005**, *16*, 13–18.

(26) Gross, L. A.; Baird, G. S.; Hoffman, R. C.; Baldridge, K. K.; Tsien, R. Y. The structure of the chromophore within DsRed, a red fluorescent protein from coral. *Proc. Natl. Acad. Sci. U.S.A.* **2000**, *97*, 11990–11995.

(27) (a) Shreder, K. R.; Wong, M. S.; Nomanbhoy, T.; Leventhal, P. S.; Fuller, S. R. Synthesis of AX7593, a quinazoline-derived photoaffinity probe for EGFR. *Org. Lett.* **2004**, *6*, 3715–3718. (b) Zoffmann, S.; Turcatti, G.; Galzi, J. L.; Dahl, M.; Chollet, A. Synthesis and characterization of fluorescent and photoactivatable MIP-1 α ligands and interactions with chemokine receptors CCR1 and CCR5. *J. Med. Chem.* **2001**, *44*, 215–222.

JM800140F